Tree-Based Machine Learning Methods in SAS(R) Viya(R)

Základní info

Tato část není lokalizována

Decision trees and tree-based ensembles are supervised learning models used for problems involving classification and regression. This course covers everything from using a single tree to more advanced bagging and boosting ensemble methods in SAS Viya. The course includes discussions of tree-structured predictive models and the methodology for growing, pruning, and assessing decision trees, forest and gradient boosting models. The course also explains isolation forest (an unsupervised learning algorithm for anomaly detection), deep forest (an alternative for neural network deep learning), and Poisson and Tweedy gradient boosted regression trees. In addition, many of the auxiliary uses of trees, such as exploratory data analysis, dimension reduction, and missing value imputation, are examined, and running open source in SAS and running SAS in open source are demonstrated.

The self-study e-learning includes:

  • Annotatable course notes in PDF format.
  • Virtual lab time to practice.

Více o kurzu

Tree-Based Machine Learning Methods in SAS(R) Viya(R)

Vybraný termín:


45 000 Kč + 21% DPH

Termíny kurzu

Tento termín

Kontaktovat dodavatele

Kontrola proti spamu. Kolik je dvě a jedna ? Součet zapište číslicemi.