Nabídka tohoto termínu kurzu již není aktuální. Podobné kurzy naleznete zde.

Úvod do strojového učení (CZ)

Jiří Materna

Kurzem Vás provede Jiří Materna

Základní info

Popis kurzu

Jedná se o úvodní kurz pro začátečníky, kteří se strojovým učením nemají žádné zkušenosti a chtějí udělat první kroky k jeho praktickému používání.

Účastníci se dozvědí, co je to strojové učení, jaké typy strojového učení se v praxi nejčastěji používají a jak jednotlivé algoritmy fungují. Nebudeme se zabývat přesným matematickým popisem, ale spíše intuitivním porozuměním, které je nezbytné pro efektivní používání a správnou volbu různých nástrojů a knihoven. Velkou pozornost věnujeme způsobům vyhodnocení natrénovaných modelů, problémům s přeučováním, přípravě dat a praktickým poznatkům, které se ve škole nedozvíte.



Každý účastník si s využitím open source knihoven prakticky vyzkouší naprogramovat jednoduché algoritmy pro klasifikaci, regresi a detekci anomálií.

Obsah kurzu

Den 1.

  • Co je to strojové učení

  • Typy strojového učení (klasifikace, regrese, řazení, reinforcement learning, clustering, detekce anomálií, doporučování, optimalizace)

  • Příprava data (rozdělení datových množin, vyváženost dat, šumy v datech, normalizace a standardizace atributů, rozpoznání přeučování a obrana proti němu)

  • Evaluace modelů pro klasifikace (accuracy, precision, recall, matice záměn, ROC křivka, AUC)

  • Základní algoritmy pro klasifikaci (baseline modely, naivní bayesovský klasifikátor, logistická regrese, Support Vector Machines, rozhodovací stromy, ensemble metody)

  • Rychlotutoriál scikit learn (načítání a transformace dat, trénování modelů a predikce, pipelines, evaluace)

  • Praktická úloha na klasifikaci

  • Základní algoritmy pro regresi (analytické metody, gradient descent, SVR, regresní stromy)

  • Evaluace regresních modelů (mean squared error, absolute squared error)

  • Praktická úloha na regresi


Den 2.


  • Základní algoritmy pro shlukování (K-means, hierarchické shlukování, metody pro určení počtu shluků)

  • Praktická úloha na shlukování

  • Úvod do neuronových sítí (proč jsou populární, výhody/nevýhody, perceptron)

  • Nejpoužívanější aktivační funkce (Sigmoid, Linear, Tanh, Relu, Softmax)

  • Vícevrstvé sítě (Algoritmus zpětné propagace chyby a stochastic gradient descent, konvoluce, pooling a regularizace)

  • Trénování neuronových sítí (epocha, iterace, batch learning)

  • Rychlotutoriál Keras (instalace TensorFlow + Keras, návrh sekvenčního modelu, optimalizátory a trénování, způsob práce s daty)

  • Praktické úlohy na klasifikaci a regresi pomocí neuronových sítí

Předpoklady


  • Základní znalost programování v Pythonu

  • Středoškolské znalosti lineární algebry, matematické analýzy a teorie pravděpodobnosti. Bude předpokládáno základní porozumění pojmům jako vektor, matice, vektorový prostor, pravděpodobnost, podmíněná pravděpodobnost, nezávislost náhodných jevů a znalost násobení matic a derivace funkcí.

Návaznosti

Zpracování přirozeného jazyka

Úvod do strojového učení (CZ)

Vybraný termín:

17.1.2022 –  18.1.2022  Online

Cena
7990 Kč + 21 % DPH

Kontaktovat dodavatele


Kontrola proti spamu. Kolik je tři a sedm ? Součet zapište číslicemi.